
DSM1 Testing

[THIS FILE HAS BEEN EDITED FOR USE IN THE 510 STSG LAB]

A

D
in

E
n
g
.

C
o
n
f.

M
em

A
D

D
R

E
S

S
C

O
N

T
R

O
L

F
P

G
A

In
p
u
t

M
em

O
u
tp

u
t

M
em

.

In
p
u
t

B
u
ff

er

L
U

T

V
M

E
-A

V
M

E
-D

A A A A

D D D D

D
o

u
t

B
u
ff

er
/L

in
e

D
ri

v
er

 -
 1

6
2
4
4

B
i-

d
ir

ec
ti

o
n
al

 B
u
ff

er
 -

 1
6
2
4
5

E
d
g
e-

tr
ig

g
er

ed
 R

eg
is

te
r/

L
at

ch
 -

 1
6
3
7
4

U
8
7

U
9
1

U
8
6

U
9
0

U
8
1

U
8
4

U
7
6

U
7
,
U

1
6
,

U
2
5
,
U

3
4

U
4
3
,
U

5
2
,

U
6
1
,
U

7
0

O
P

E
R

A
T

IO
N

C
O

N
T

R
O

L
F

P
G

A

to
 c

o
n
tr

o
l

p
in

s
o
f

al
l

ch
ip

s:
 O

E
,
D

IR
,
et

c.
..

U
3
,
U

1
2
,

U
2
1
,
U

3
0

U
3
9
,
U

4
8
,

U
5
7
,
U

6
6

U
7
3

U
7
5

U
7
9

U
8
0

U
8
,
U

1
7
,
U

2
6
,
U

3
5

U
4
4
,
U

5
3
,
U

6
2
,
U

7
1

fr
o
m

 V
M

E
-6

4
 b

lo
ck

tr
an

sf
er

 l
o
g
ic

U
1
0
9

U
1
1
2

U
4
,
U

1
3
,
U

2
2
,
U

3
1

U
4
0
,
U

4
9
,
U

5
8
,
U

6
7

U
8
8

U
9
2

U
8
9

U
9
3

fr
o
m

 V
M

E
-6

4
 b

lo
ck

tr
an

sf
er

 l
o
g
ic

D
S

M
1
 V

M
E

3
2
 I

/O

C
o
n

n
e
c
ti

o
n

s

DSM boards to be tested should be placed in a 9u VME crate with a
160 pin connectors on its P3 backplane. The crate should also
contain an MVME 2306 processor and an RCC2 clock board with a
RCF2 back-of-crate fan-out board. Just such a crate, outfitted
with the necessary boards and network connections, is currently
setup in the southeast corner of the STSG lab. To communicate
with the DSM board to be tested you must access the processor

(currently trgfe2) that is in that DSM test crate. To gain access
to the trgfe2 processor log into presley2 linux machine either

from the console in bldg 510 rm 235 (southeast corner) or
remotely by accessing presley3.star.bnl.gov (typically using the
daqlab account). Once on presley2, you can access the "trgfe2"
mvme2306 processor either by connecting to it's debug/console

port from the "daqserv" computone server:

telnet daqserv 9001

(where 9001 expects the silver satin cable in the mvme 2306 debug
port is connected to channel 1 of the computone server, daqserv),
or by telneting directly to the mvme2306 processor:

telnet trgfe2

(note: to exit either type of telnet session hold down the
"control key" and hit close square bracket key, "]", then at the
telnet> prompt enter “quit”. Next take the processor down to its
boot mode (enter cntrl-x then hit any key to stop the processor
from rebooting). Then type “p” at the boot prompt to display the
current startup configuration of processor:

[VxWorks Boot]: p

boot device : dc
processor number : 0
host name : presley2
file name :
/home/daqlab/vxworks/wind_ppc/target/config/kern2306/vxWorks.sb
inet on ethernet (e) : 192.168.140.12:ffffff00
host inet (h) : 192.168.140.5
user (u) : daqlab
ftp password (pw) : ********
flags (f) : 0x8
target name (tn) : trgfe2
startup script (s) :
/home/daqlab/old_presley/Trigger/trgfe2.startup.DSMtest

[VxWorks Boot]:

If necessary change the startup file to

/home/daqlab/old_presley/Trigger/trgfe2.startup.DSMtest

then reboot the processor. this is a minimal startup script that
loads some of the necessary object files (testdma.o but not
dsm.o) needed for running the scripts that test the DSM boards.

STANDALONE TESTS:

For the standard DSM standalone tests you need to load the dsm.o
library:

ld < dsm.o

(note: the alternative is the dsm_egj.o library which will be
discussed later in this docuement).

the following standalone test scripts for testing the various
memories and different functions of the FPGA are available (see
DSM flow diagram on previous page)

DSM_FPGA_Config_Test(0x14000000,0x8,"config_board_14.dat",0x1)
DSM_Mem_Test(0x14000000,0x1,"mem_board_14.dat",0x0,0x0,0x1)
DSM_Addr_Test(0x14000000,0x200,"addr_board_14.dat",0x1)
DSM_FIFO_Test(0x14000000,0x200,"fifo_board_14.dat",0x1)
DSM_InOut_FPGA_Test(0x14000000,0x8,"fpga_board_14.dat",0x1)

in the above the first entry in each of these tests designates
the VME address of the board being tested. This VME address is
set by two rotary switches, SW2 & SW4, located in the upper right
hand portion of the DSM board. The entry in quotes is the
name given to the output log file that stores the results of the
test. The unofficial standard is to include the serial number of
the dsm board being tested (e.g. board_14 in the example above).
there are example test files in the ~daqlab/old_presley/Trigger
directory which are already setup to test either single or
multiple DSM (e.g. test_dsm_board_17, test_151617_crate, etc.).

note: if an error occurs you will see it printed out to the
screen. However, should you miss the error notice as it scrolls
past, you can retrieve the information by simply "grep"-ing the
output files:

grep -i err *.dat

in many cases is it is informative to keep the results of the
tests. if this is true for your work, please create a new
subdirectory that includes the name of the detector system tested
and the date of the test (e.g.

mkdir board_14_dsm_test_sep03)

and move your test results there

mv *board_14*.dat /board_14_dsm_tests_sep03/.

this will keep the ~daqlab/old_presley/Trigger directory from
becoming junked up with log files.

EXPANDED MEMORY TESTING:

A common failure on the aging DSM1 boards are the memory chips.
If the DSM_Mem_Test above reports and error, the next step in
identifying the problem chip is to use an expanded memory test
that Eleanor developed. To employ this expanded memory test, you
must reboot the processor (or unload the various object files by
hand). Once the reboot has finished, load the dsm_egj.o library
NOT dsm.o

ld < dsm_egj.o

the new version of the DSM_Mem_Test contains additional arguments
to specify which memory banks are to be tested and if the engine
registers are loaded:

DSM_Mem_Test(base_address,#loops,"outfile_name.dat",onoff_mask,#e
ng_reg,eng_reg_mask,finish_flag)

where onoff_mask is the piece added and everything else is as it
was in the old version.

onoff_mask is a bitmask, one bit for each memory in the VME
memory map. The bit map is:
bit 0 = Input Buffer 1
bit 1 = input Buffer 2
bit 2 = Input Buffer 3
bit 3 = Input Buffer 4
bit 4 = LUT 1
bit 5 = LUT 2
bit 6 = LUT 3
bit 7 = LUT 4
bit 8 = Input Memory (aka Simulation Memory) 1
bit 9 = Input Memory 2
bit 10 = Input Memory 3
bit 11 = Input Memory 4
bit 12 = Output Memory
bit 13 = Engine Registers
bit 14 = Engine Configuration Memory

Useful values:
onoff_mask = 0x5f77 is used when the Engine FPA is not
configured. This turns on everything EXCEPT IB4 and LUT4
(contention with FPGA) and the engine registers.
onoff_mask = 0x5fff turns on everything except the engine
registers. This is useful if the big FPGA is configured with an
algorithm that has no registers
onoff_mask = 0x0070 turns on ONLY the LUTS that have no problems
when the FPGA is not configured. This is useful because the LUT
are the only memories that can be accessed without the Address
Control FPGA. If you cannot access any of these 3 memories
correctly then the problem is either the Op Control FPGA
(unlikely) or the VME interface chips (most likely).

CHAINBLOCK TRANSFER (DMA) TEST:

once you have at least two DSMs that pass all the standalone
tests above, you will want to check that the boards will pass a
full on chainblock transfer test. To do so, at the prompt on the
processor, load the following object file:

ld < DSM_cblt_test.o

This file operates a 10 ms delay between every check. There is
another file than can be used:

ld < DSM_cblt_test2.o

which has two changes from the previous option. (1) the DMA
routines are exactly those used in trigger software. (The
previous option uses much older routines). (2) There is an
additional argument which specifies the time delay between every
check - the delay is given in microsecs. If this delay is 0,
then the data checks are not made; there is no delay; and the DMA
readout is executed in a tight loop. The intention is to

V
M

E
-A

V
M

E
-D

D

B
u

ff
er

/L
in

e
D

ri
v

er
 -

 1
6

2
4

4

B
i-

d
ir

ec
ti

o
n

al
 B

u
ff

er
 -

 1
6

2
4

5

E
d

g
e-

tr
ig

g
er

ed
 R

eg
is

te
r/

L
at

ch
 -

 1
6

3
7

4

U
8

7
U

9
1

U
8

6
U

9
0

O
P

E
R

A
T

IO
N

C
O

N
T

R
O

L
F

P
G

A

to
 c

o
n

tr
o

l
p

in
s

o
f

al
l

ch
ip

s:
 O

E
,

D
IR

,
et

c.
..

to
 V

M
E

-3
2

R
/W

 l
o

g
ic

U
8

8
U

9
2

U
8

9
U

9
3

to
/f

ro
m

 V
M

E
-3

2
R

/W
 l

o
g
ic

D
S

M
1
 V

M
E

6
4

B
lo

c
k

 R
e
a

d

C
o
n

n
e
c
ti

o
n

s U
9

4
U

9
7

O
E

_
1

O
E

_
2

O
E

_
1

O
E

_
2

D D D

In
p

u
t

B
u

ff
er

0
/1

In
p

u
t

B
u

ff
er

4
/5

In
p

u
t

B
u

ff
er

2
/3

In
p

u
t

B
u

ff
er

6
/7

U
6

,
U

1
5

U
2

4
,

U
3

3

U
4

2
,

U
5

1

U
6

0
,

U
6

9

discover if there are any rate dependencies in the DMA loop.

You need to make sure tonko's logging system is turned off the
verbose mode

tonkoLogLevel= 1

(this may not be necessary for the startup file being used in the
STSG lab). you will now need to initialize the boards and specify
the DSM that is at the begining(first) of the chain, the
end(last) of the chain, and those in the middle:

DSMinit("DSM_CBLT_First.dat",0x10000000)
DSMinit("DSM_CBLT_Middle.dat",0x11000000)
.
.
.
DSMinit("DSM_CBLT_Last.dat",0x1c000000)

again, there are files already setup that contain these calls so
in most cases you can simply load one of those files (e.g.

<cblt_test_151617_setup

YOU MUST PUT THE SYSTEM INTO RUN MODE BEFORE RUNNING THIS TEST!

the DSM test crate contains an RCC2 clock modules at VME address
0x25000000. to put the DSMs in run mode, put a "1" into the
run/stop register at 0x20. (note: putting a "0" in that location
take the RCC2 board (and hence the DSMs) in that crate out of run
mode). So to put the system in run mode simply type

m 0x25000020,4

then input a "1"

go back to the processor controlling the DSMs for the detector
system that you are testing and execute the following command

DSM_CBLT_Crate_Test(0x20000000,0x1,3,"B14B26B96_cblt_test.dat",1)

the first entry for this command is the chainblock transfer
address (we use 0x20000000 which must be set on SW1 and SW3 on
the DSM boards), the second entry is the number of times to read
out (i.e. loop thru) the system, the third entry specifies the
number of DSM boards in the detector system (i.e. the crate), the
fourth entry is the name of the logfile to be created, the final
entry specifies whether the test is to stop at a failure (1) or
to continue until the number of loops requested has been
accomplished (0x0). again, errors will be printed on the screen

and can be found in the logfile. For example:

trgfe2_DSM>
DSM_CBLT_Crate_Test(0x20000000,0x1,3,"B18B31B66_cblt_test.dat",0x
1)
DSM_Set_ERR: INFO, WARNINGs and ERRs will be printed
Address of buffer: 0x1eff200
Size of buffer is 48 bytes
Size of DMA Transfer will be 48 bytes
DMA initialised
DSM_CBLT_Crate_Test: DSM Data will be at 0x1eff200
DSM_CBLT_Crate_Test: Starting Loop 0
DSM_CBLT_Crate_Test: ERROR - Loop = 0 i = 0x18
DSM_CBLT_Crate_Test: Latched data 0x18
DSM_CBLT_Crate_Test: Read data 0x0 in DSM 1 Ch 8
value = 0 = 0x0

note: the board that has shown an error, "DSM 1", and the
channel, "Ch 8", are reported. Board numbers start at "0" and
channel numbers run from "0" to "15". so in this example board
with serial number 26 is the one showing a problem. Note: there
are times when the chainblock transfer fails to complete a single
loop, no logfile is generated, and the error on the screen will
show something like:

trgfe2_DSM>
DSM_CBLT_Crate_Test(0x20000000,0x1,4,"B18B31B66BXX_cblt_test.dat"
,0x1)
DSM_Set_ERR: INFO, WARNINGs and ERRs will be printed
Address of buffer: 0x1eff248
Size of buffer is 64 bytes
Size of DMA Transfer will be 64 bytes
DMA initialised
DSM_CBLT_Crate_Test: DSM Data will be at 0x1eff248
DSM_CBLT_Crate_Test: Starting Loop 0
interrupt: VME DMA Bus Error: status 0x0040026F.
0x1cd9648 (tShell): WARNING: uniDmaLib.c [line 115]: Universe DMA
semaphore timed out.
Problem with DMA. err=-1
DSM_CBLT_Crate_Test: ERROR - dma transaction failed
DSM_CBLT_Crate_Test: Loop = 0 i = 0x2
value = 0 = 0x0

in these cases, to find the troubled board you need to look into
the MVME2306's memory buffer to determine the board that is
failing to post its data. to do this use the "m" command and the
memory buffer address reported on the screen to query the data
that was sent. in this example:

trgfe2_DSM> m 0x1eff248

01eff248: 02020202-
01eff24c: 02020202-
01eff250: 02020202-
01eff254: 02020202-
01eff258: 02020202-
01eff25c: 02020202-
01eff260: 02020202-
01eff264: 02020202-
01eff268: 02020202-
01eff26c: 02020202-
01eff270: 02020202-
01eff274: 02020202-
01eff278: 00000000-
01eff27c: 00000000-
01eff280: 00000000-

each DSM should present 128 bits (or four 32 bit words). In this
example there are twelve non-zero 32 bit words. This means that
the first 3 DSMs reported their data correctly. So the trouble
is either with the fourth DSM or possibly the 3rd DSM failed to
relay the chainblock command to the fourth DSM.

If you use the second object file (DSM_cblt_test2.o) described
above:

DSM_CBLT_Crate_Test(0x20000000,0x1,13,"FPW_cblt_crate_test.dat",0
x1,100)

then the extra argument at the end (100 in this example) is the
delay in microseconds between each check.

NOTE: if the chainblock transfer test fails. the DSM test crate
containing the DSMs being tested MUST BE POWER CYCLED, simply
rebooting the processor will not be sufficient to clear the DSMs.
further, to reconfigure correctly upon reboot, the system must be
placed in LOAD mode (i.e. the RCC2 run register, 0x25000020, must
be set to “0”). For the DSM systems at BNL:

m 0x25000020,4
0
.

(it is best to do this before power cycling the crate that
contained the DSMs which failed the chainblock transfer test)

[NOTE: if you are testing at the STAR hall and had previously
removed the processor from run control, then when you are
finished testing, remember to reset the processor to use its
original startup script e.g.

/home/startrg/trg/cfg/STARTUP/dsm.startup.full

once the processor has been rebooted into this running
configuration, re-establish the processor's communciation with
run control by clicking it back using the "Show Components" GUI.
Finally, take a pedAsPhys run for at least 100 events and make
sure the system is able to take data. be aware of any error
messages that might appear at the bottom of the DAQ monitor
screen].

OUT IN LOOP TESTS

Plug a 34 conductor cable between Output (0-15) and INPUT Ch0 on
the DSMI behind the DSM being tested. next place another cable
between Output (16-31) and Input Ch2. run the command

DSM_OutIn_Loop_Test(void *base_address, int nloop, char *errname,
int finish)
for example:
DSM_OutIn_Loop_Test(0x17000000,8,"DSM21_OutIn01_loop.dat",0x1)
 this will generate a ramp on the output that will be read and
compared on the inputs. if successful, then move the cables to
the next set of inputs (ch2 and ch3) and repeat the procedure
using the same command. continue to 4&5 and 6&7.

TEST DATA TRANSFER FROM ONE LAYER DSM TO THE NEXT LAYER

Reconfigure the two (or more) DSMs to be tested using the
following:

DSMinit("DSM_Ramp_Test.dat",0xYY000000)

where "YY" is the board address for both the source DSM(s) and
the DSM that
will be receiving the data. The DSM_Ramp_Test.dat file loads a
ramp into the
output memories and sets them to play while seting the input
memories to
record. once the boards are configured put the system into run
mode
(using the run control gui or) the RCC2 master in the L1 crate
(make sure the RCC2s in the crates that house the DSMs you are
using are set to "slave" mode i.e. the register at 0x08 of the
respective RCC2s is set to "0").

0x25000020,4
1
.

then immediately set the system back to the ready mode

0x25000020,4
0
.

now scroll thru the relevant memories on the receiving DSM (e.g.

m 0x17000000,4
or
m 0x17040000,4
or
m 0x17080000,4
or
m 0x170c0000,4

you should see a 16 bit ramp being sent from the source boards
that were
configured (e.g.

> > BC1> m 0x15000000,4
> > 15000000: fffdfffd-
> > 15000004: fffefffe-
> > 15000008: ffffffff-
> > 1500000c: 00000000-
> > 15000010: 00010001-

> > 15000014: 00020002-
> > 15000018: 00030003-
> > 1500001c: 00040004-
> > 15000020: 00050005-
> > 15000024: 00060006-
> > 15000028: 00070007-
> > 1500002c: 00080008-
> > 15000030: 00090009-
> > 15000034: 000a000a-
> > 15000038: 000b000b-
> > 1500003c: 000c000c-
> > 15000040: 000d000d-
> > 15000044: 000e000e-
> > 15000048: 000f000f-
> > 1500004c: 00100010-
> > 15000050: 00110011-.
	

